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Abstract

Purpose – Obtaining the maximum possible flow rates that can be induced by free convection in
open-ended vertical eccentric annuli under fundamental thermal boundary conditions of the fourth
kind (heating or cooling one of the annulus walls with a uniform heat flux while keeping the other wall
at ambient temperature). Obtaining the maximum possible flow rates that can be induced by free
convection in open-ended vertical eccentric annuli under fundamental thermal boundary conditions of
the fourth kind (heating or cooling one of the annulus walls with a uniform heat flux while keeping the
other wall at ambient temperature).

Design/methodology/approach – The fully-developed laminar free convection momentum
equation has been solved numerically using an analytical solution of the governing energy equation.

Findings – Results are presented to show the effect of the annulus radius ratio and the dimensionless
eccentricity on the induced flow rate, the total heat absorbed by the fluid, and the fully developed
Nusselt numbers on the two boundaries of the annulus for a fluid of Prandtl number 0.7.

Practical implications – Applications of the obtained results can be of value in the heat-exchanger
industry, in cooling of underground electric cables, and in cooling small vertical electric motors and
generators.

Originality/value – The paper presents a solution that is not available in the literature for the
problem of fully developed free convection in open-ended vertical eccentric annular channels under
thermal boundary conditions of the fourth kind. Also presents the maximum possible induced flow
rates, the total heat absorbed by the fluid, and the Nusselt numbers on the two boundaries of the
annulus. The effects of N and E (the radius ratio and eccentricity, respectively) on these results are
presented. Such results are very much needed for design purposes of heat transfer equipment.
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Nomenclature
a ¼ location of the positive pole of the

bipolar coordinate system on the
x-axis of the Cartesian coordinate
system (constant in the bipolar
transformation equations, equal to
ri sinh hi or ro sinh ho)

a* ¼ heat transfer coefficient,
q00/(Tw2Tm)

A ¼ cross-sectional area of the duct,
p ðr2

o 2 r2
i Þ

A* ¼ constant of the integration in
equation (10)
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Ai ¼ inner surface area of the duct, 2pril
Ao ¼ outer surface area of the duct, 2prol
B ¼ constant of the integration in

equation (10)
cp ¼ specific heat of the fluid at constant

pressure
C ¼ constant of the integration in

equation (10)
Dh ¼ hydraulic or equivalent diameter of

annulus, 2ðro 2 riÞ ¼ 2að1 2 N Þ
Csch ho

D ¼ constant of integration in equation
(10)

e ¼ eccentricity (distance between the
axes of the two cylinders forming
the eccentric annulus),
a(coth ho2coth hi)

E ¼ dimensionless eccentricity, e/(ro2ri)
f ¼ volumetric flow rate,

f ¼ p r2
o 2 r2

i

� �
�u

¼ 2

Z p

0

Z hi

ho

uh 2 dh dj

F ¼ dimensionless volumetric flow rate,

f=plgGr* ¼ 8ð1 2 NÞ2

£

Z p

0

Z hi

ho

UH 2 dh dj=p

g ¼ gravitational body force per unit
mass(acceleration)

Gr ¼ Grashof number, 7gbqD 4=2g 2k
the plus and minus signs apply to
upward (heating) and downward
(cooling) flows, respectively. Thus,
Gr is always positive

Gr* ¼ modified Grashof number,
Gr* ¼ Gr Dh/l

h ¼ coordinate transformation scale
factor, a/(coshh 2 cos j)

H ¼ dimensionless coordinate
transformation scale factor,

h=Dh ¼
0:5 sinhðhoÞ

ð1 2 N ÞðcoshðhÞ2 cosðjÞÞ

i ¼ index for the finite difference grid in
h-direction

j ¼ index for the finite difference grid in
j-direction

k ¼ thermal conductivity of fluid
l ¼ height of the channel
m ¼ number of intervals in j-direction
n ¼ number of intervals in h-direction or

infinite series summation index in the
fully developed flow solution

N ¼ radius ratio, ri/ro¼sinh ho/sinh hi

Nu4:x
y ¼ local Nusselt number at any point on

the inner or outer wall of the annulus
where x and y are dummy variables; x
represents the case under
consideration which may be either I
for an inner heated wall or O for an
outer heated wall, while y stands for
the specified wall and may also be
either i or o for the inner and outer
walls, respectively, a*Dh/k

Nu4:x
y ¼ Nusselt number averaged around the

complete periphery of the y-wall of the
annulus for a given Z where x and y
are dummy variables explained
above,

2ð1 2 N Þ

Np

Z p

0

Nu4:x
i H ðhi; jÞ dj

on the inner wall or

2ð1 2 N Þ

p

Z p

0

Nu4:x
o H ðho; jÞ dj

on the outer wall
p ¼ pressure at any cross-section
p0 ¼ pressure at annulus entrance
ps ¼ static pressure at elevation z, 2r0gz
p0 ¼ pressure defect at any point, p 2 ps

P ¼ dimensionless pressure at any
cross-section, p0D4

h=r0l
2g 2Gr* 2

Pr ¼ Prandtl number, m cp/k
q00 ¼ local heat flux at either boundary of

the annulus defined to be positive
when it heats the fluid, 2k ›T=›n* ¼
^ðk=hÞð›T=›hÞ where the upper and
lower signs stand for the inner and
outer walls, respectively, in the case of
fluid heating and vice versa in the
case of fluid cooling

q ¼ heat gained or lost by fluid from
the entrance up to a particular
elevation in the annulus,
r0fcpðTm 2 T0Þ
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�q ¼ heat gained or lost by fluid from the
entrance up to the annulus exit, i.e.
value of q at z ¼ l; r0fcpð �Tm 2 T0Þ

Q ¼ dimensionless heat absorbed from the
entrance up to any particular
elevation, q=½pr0cplgGr*
ðTw 2 T0Þ� ¼ Fum

�Q ¼ dimensionless heat absorbed up
to the annulus exit, i.e. value of Q at
z ¼ l, �q=½pr0cplgGr* ðTw 2 T0Þ� ¼
F �um

ri ¼ the radius of the inner cylinder of the
annulus

ro ¼ the radius of the outer cylinder of the
annulus

Ra ¼ Rayleigh number, Gr Pr
Ra* ¼ modified Rayleigh number,

Gr* Pr ¼ RaDh/l
T ¼ temperature at any point
Tm ¼ mixing-cup (mixed-mean)

temperature over any cross section of
the annulus at a given z,Z

A

TudA=ðA�uÞ

¼2

Z p

0

Z hi

ho

Tu 2dhdj=½pðr2
o2r2

i Þ�

T0 ¼ ambient or entrance temperature
Tw ¼ isothermal heated wall temperature
u ¼ axial (streamwise) velocity

component
�u ¼ average (mean) axial velocity,Z

A

udA=A

¼2

Z p

0

Z hi

ho

uh 2dhdj=½pðr2
o2r2

i Þ�

¼2

Z p

0

Z hi

ho

uh 2dhdj=

½pa 2ð12N 2ÞCsch 2ho�

U ¼ dimensionless axial velocity
component, ur2

0=lgGr*
X ¼ the dimensionless first transverse

direction in the Cartesian coordinate
system, x/r0

x ¼ the first transverse direction in the
Cartesian coordinate system

y ¼ the second transverse direction in the
Cartesian coordinate system

z ¼ axial coordinate in both Cartesian and
bipolar coordinate systems (measured
from the annulus entrance)

Z ¼ dimensionless axial coordinate in
both Cartesian and bipolar
coordinate systems, z/(DhRe)

x ¼
asinhðhÞ

coshðhÞ2cosðjÞ
;

y ¼
asinðjÞ

coshðhÞ2cosðjÞ
; z ¼ z

Greek letters
a ¼ thermal diffusivity of fluid, k/rcp

h ¼ the first transverse bipolar
coordinate

hi ¼ value of h on the inner surface of
the annulus,

loge
Nð1þE 2Þþð12E 2Þ

2NE

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ð1þE 2Þþð12E 2Þ

2NE

� �2

21

s 3
5

¼cosh21 N ð1þE 2Þþð12E 2Þ

2NE

� �

ho ¼ value of h on the outer surface of
the annulus,

loge
Nð12E 2Þþð1þE 2Þ

2E

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ð12E 2Þþð1þE 2Þ

2E

� �2

21

s 3
5

¼ cosh21 Nð12E 2Þþð1þE 2Þ

2E

� �
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Introduction
Heat transfer in annuli occurs in the electrical field (Abdulhadi and Chato, 1977; Notaro
and Webster, 1971), in the nuclear field (Lowry et al. 1980), and in petroleum
engineering (Yonggang and Junfang, 1995). In the available literature, there are two
essential papers dealing with fully developed laminar heat transfer in concentric
annuli. The first of these, by Reynolds et al. (1963), presented for the first time a general
formulation of the fully developed forced convection problem in concentric annuli for
arbitrarily prescribed wall temperatures or heat fluxes. Four fundamental thermal
boundary conditions were introduced. The second paper, by El-Shaarawi and Al-Nimr
(1990), presented a detailed analysis and analytical solutions for the fully developed
laminar free convection in vertical open-ended concentric annuli under the four
fundamental thermal boundary conditions.

Fully developed forced convection in eccentric annuli can be found in Cladwell
(1930), Piercy et al. (1933), Heyda (1959), Redberger and Charles (1962), Snyder (1963),
Snyder and Goldstein (1965), Cheng and Hwang (1968), Trombeta (1972) and Guckes
(1975)). In most of these papers, the governing momentum equation has been solved
analytically using the solution given by El-Saden (1961) while, the governing energy
equation has been solved numerically. While solving the developing flow problem,
Feldman et al. (1982a, b) reported results for the fully developed forced convection in an
eccentric annulus.

A thorough literature survey revealed that there are no solutions available for the
problem of fully developed free convection in open-ended vertical eccentric annular
channels other than those reported by the authors El-Shaarawi and Mokheimer (1999)
and El-Shaarawi et al. (2001) for cases with isothermal boundary conditions of the
first and third kinds. The lack of information regarding the fully developed free
convection in open-ended vertical eccentric annuli with uniform heat flux conditions
motivated the present work. This paper deals with free convection heat transfer in
vertical eccentric annuli under fundamental thermal boundary conditions of the
fourth kind. The paper presents the maximum possible induced flow rates, the total
heat absorbed by the fluid, and the Nusselt numbers on the two boundaries of the
annulus. The effects of N and E (the radius ratio and eccentricity, respectively) on the

Dh ¼ numerical grid mesh size in
h-direction, (hi2ho)/n

7 ¼ gradient operator
72 ¼ Laplacian operator
u ¼ dimensionless temperature,

T2T0

q00Dh=k

m ¼ dynamic viscosity of fluid
g ¼ kinematic viscosity of fluid, m/r
j ¼ the second transverse bipolar

coordinate

Dj ¼ numerical grid mesh size in
j-direction, p/m

r ¼ density of fluid
f ¼ normalized value of h,

(h 2 ho)/(hi2ho)
c ¼ normalized value of j, j/p

Subscripts
c ¼ circumferentially averaged
i ¼ inner
iw ¼ inner wall
o ¼ outer
ow ¼ outer wall

HFF
15,2

164



results are presented. Such results are very much needed for design purposes of heat
transfer equipment.

Problem formulation
As shown in Figure 1, the channel under consideration comprises an eccentric annulus
of finite length, open at both ends and is vertically immersed in a stagnant Newtonian
fluid of infinite extent maintained at constant temperature T0. Free convection flow is
induced inside this annular channel as a result of heating or cooling one of the channel
walls with a uniform heat flux while keeping the other wall at ambient temperature.
The uniform heat flux wall is called the active wall. If the active wall is the inner wall
the case is referred to as case 4.I while case 4.O refers to the case in which the outer wall
is the active wall. The fluid enters the channel at the ambient temperature T0 and is
assumed to have constant physical properties, but obeys the Boussinesq
approximation according to which its density is allowed to vary with temperature in
only the gravitational body force term of the vertical (axial) momentum equation. Body
forces in other than the vertical direction, viscous dissipation, internal heat generation,
and radiation heat transfer are absent. The latter assumption implies low emissivities
of the annulus walls and low to moderate gap temperature differences.

The bipolar coordinates shown in Figure 2 are used to describe the problem. The
relations between Cartesian and bipolar coordinates are given in the nomenclature.

Figure 1.
Two-dimensional plane

and elevation of the
geometry under

consideration
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If the channel is sufficiently high, fully-developed free convection can be achieved.
Fully developed flow conditions mean that the velocity components in h and j
directions vanish, the axial velocity component u does not vary with the axial
coordinate, i.e. ›u=›z ¼ 0 or u ¼ uðh; j), and the momentum and heat diffusion in the
axial direction vanish, i.e. ›2u=›z2 ¼ ›2T=›z 2 ¼ 0: Thus, the continuity equation
automatically vanishes and the momentum equations in h and j directions reduce,
respectively, to ›p=›h ¼ 0 (i.e. p is independent of h) and ›p=›j ¼ 0 (i.e. p is also
independent of j). Consequently, the pressure is a function of z only (hence,
›p=›z ¼ dp=dz). Introducing the dimensionless parameters given in the nomenclature,
the equations which govern the fully developed free convection in the present case
become identical to those representing the case with isothermal boundary (El-Shaarawi
et al., 2001). These governing equations are the following coupled Z-momentum and
energy equations, respectively.

1

H 2

›2U

›h 2
þ

›2U

›j 2

� �
2

1

4ð1 2 NÞ2

dP

dZ
¼ 2

u

4ð1 2 N Þ2
ð1Þ

1

H 2

›2u

›h 2
þ

›2u

›j 2

� �
¼ 4ð1 2 N Þ2 PrU

›u

›Z
ð2Þ

Owing to the presence of a plane of symmetry for the geometry under study, these two
equations will be solved on one half of the annulus (i.e. 0 # j # p) subject to the
following hydrodynamic, thermal and symmetry conditions:

Figure 2.
Bipolar coordinate system
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For h ¼ hi or h ¼ ho;U ¼ 0

For j ¼ 0 or j ¼ p; ›U=›j ¼ ›u=›j ¼ 0

For Case 4:I : at h ¼ hi;
›u

›h

����
hi

¼ ^H ðhi; jÞ and at h ¼ ho; u ¼ 0

For Case 4:O : at h ¼ hi; u ¼ 0 and at h ¼ ho
›u

›h

����
hi

¼ 7H ðho; jÞ

9>>>>>>>>=
>>>>>>>>;

ð3Þ

The plus and minus signs in the thermal boundary conditions on the inner wall
ðh ¼ hiÞ are applicable for heating and cooling, respectively. However, the minus and
plus signs in the thermal boundary conditions at ðh ¼ hoÞ are for heating and cooling,
respectively.

Mathematical analysis
The mathematical analysis in this section is identical to that given by El-Shaarawi et al.
(2001) and leads to the following equations.

›u

›Z
¼

d2P

dZ 2
ð4Þ

1

UH 2

›2

›h 2

1

H 2

›2U

›h2
þ

›2U

›j 2

� �� �
þ

›2

›j 2

1

H 2

›2U

›h 2
þ

›2U

›j 2

� �� �� �
¼ Pr

d2P

dZ 2
ð5Þ

A solution of equation (5) in the form U ¼ U ðh; jÞ is only possible if

d2P=dZ 2 ¼ a ð6Þ

where a is a constant. From equations (4) and (6), one can write

›u=›Z ¼ a ð7Þ

which means that, in the fully developed flow region, ›u=›Z is also constant and hence,
for a point of given h and j, u varies linearly with Z. Thus, regardless of the value of Pr,
a hydrodynamically fully developed free convection ›u=›Z ¼ 0 necessarily means that
the flow has already been thermally fully developed.

In the cases under consideration (boundary conditions of fourth kind) at least one of
the annulus boundaries (hi or ho) is kept isothermal and hence ð›u=›Z ¼ 0Þ on such an
isothermal boundary. The combination of equation (7) with an isothermal boundary
condition leads to the conclusion that a, for such a fully-developed region, must equal
zero ða ¼ 0Þ: Thus, the energy equation (2) reduces to the following:

›2u

›h 2
þ

›2u

›j 2

� �
¼ 0: ð8Þ

With a ¼ 0; equation (6) means that the pressure gradient (dP/dZ) in the
fully-developed region is constant (i.e. P varies linearly with Z). However, if the
channel is extremely high the fully-developed region could occupy a very large portion
of the channel height, the developing length could be neglected in comparison with that
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of the fully-developed region and hence the assumption of fully-developed flow right
from the channel entrance can be made. In this case, integrating equation (6) twice and
applying the boundary conditions that the pressure is atmospheric at both inlet and
exit of the annulus, i.e. P ¼ 0 at Z ¼ 0 and L (El-Shaarawi and Al-Nimr, 1990) leads to
the following simplified form of equation (1).

›2U

›h 2
þ

›2U

›j 2

� �
¼ 2

u

4ð1 2 N Þ2
H 2 ð9Þ

Method of solution
The governing equations for the fully developed laminar free convection are equations
(8) and (9) which are strongly coupled through the buoyancy term.

Analytical solution for the energy equation
The energy equation (8) subject to the aforesaid boundary conditions (3) can be solved
analytically. A closed form analytical solution for this equation can be obtained as a
special form of the general solution of the steady-state conduction problem given by
El-Shaarawi and Mokheimer (1995) after neglecting the internal heat generation. In
other words, the solution of equation (8) corresponds to the complementary part of the
general solution given by El-Shaarawi and Mokheimer (1995) and can be written as:

u ¼ A*hþ Bþ
X1
n¼1

ðCenh þ De2nhÞ cosðnjÞ ð10Þ

where the values of the constants A*, B, C and D are as follows:

case 4:I case 4:O

A* ¼
0:5N

1 2 N
A* ¼

0:5

1 2 N

B ¼ 2A*ho B ¼ 2A*hi

C ¼
N

nðe2nhi þ e2nho Þð1 2 N Þ
C ¼

1

nðe2nhi þ e2nho Þð1 2 N Þ

D ¼
e2nho

nðe2nhi þ e2nho Þð1 2 N Þ
D ¼

e2nhi

nðe2nhi þ e2nho Þð1 2 N Þ

Numerical solution for the momentum equation
The above analytical solutions for u will be substituted in the momentum equation (9),
which will then be solved numerically. Equation (9) can be replaced by the following
finite-difference representation:
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U ði2 1; jÞ2 2U ði; jÞ þ U ði þ 1; jÞ

ðDhÞ2
þ

U ði; j2 1Þ2 2U ði; jÞ þ U ði; jþ 1Þ

ðDjÞ2

¼
2uði; jÞðH ði; jÞÞ2

4ð1 2 N Þ2
:

The above equation will be solved iteratively after rearranging its terms as follows:

U ði; jÞ ¼
1

2 1
ðDhÞ2

þ 1
ðDjÞ2

	 
 U* ði2 1; j Þ þ U* ði þ 1; j Þ

ðDhÞ2

�

þ
U* ði; j2 1Þ þ U* ði; jþ 1Þ

ðDjÞ2
þ

uði; jÞH 2ði; jÞ

4ð1 2 N Þ2

� ð11Þ

in which i, j are indices for the numerical grid shown in Figure 3 and the asterisk in
superscript means values from the previous iteration.

The problem under investigation is governed by three dimensionless parameters,
namely, the radius ratio, N, the eccentricity, E, and the Prandtl number, Pr. For a fluid
of a given Pr in an annulus of given N and E, the solution starts by calculating the
corresponding values of hi and ho by means of the equations given in the
nomenclature. Selecting the numbers of increments in h and j directions (n and m,
respectively) the values of Dh and Dj can be computed.

The algorithm of solution is to assume a velocity field at all grid points, U* (i, j).
Substitute these values of U* together with the known values of u (i, j) and H(i, j) on the
right hand side of equation (10) to obtain the new values of U(i, j). If the relative error
between U and U* at all grid points ((U(i, j)2U*(i, j))/ U(i, j)) satisfies a prescribed
solution criterion (#1024 per cent in the present work) the iteration process is stopped,

Figure 3.
The transformed

geometry in h-j plane and
the numerical mesh

network

Maximum
possible induced

flow rates

169



otherwise the iteration process continues after updating the values of U* according to
the following relaxation equation:

U* ði; jÞ ¼ U*
oldði; jÞ þ w½U ði; jÞ2 U*

oldði; jÞ�: ð12Þ

In the above equation w is a relaxation factor which has been found to be 0.8 through
numerical experimentation.

Having computed the local velocity values (U(i, j)), the average velocity can be
expressed as a function of the local velocity by the equation:

�U ¼
8

p

1 2 N

1 þ N

Z p

0

Z hi

ho

UH 2 dh dj: ð13Þ

The above integration has been evaluated numerically by the following representation:

U ¼
8

p

1 2 N

1 þ N

Xm
j¼2

Xn
i¼2

U ði; jÞðH ði; jÞÞ2 þ 0:5
Xn
i¼2

�
U ði; 1ÞðH ði; 1ÞÞ2

 

þU ði;mþ 1ÞðH ði;mþ 1ÞÞ2
�!

DhDj

ð14Þ

The induced flow rate is given by the following dimensional equation

f ¼ 2

Z p

0

Z hi

ho

uh 2 dh dj;

which in dimensionless form can be written as:

F ¼ ð1 2 N 2Þ �U: ð15Þ

Suitable mesh sizes in the h and j directions were chosen so that the numerical solution
of the finite-difference equation is practically independent of the increment sizes in all
directions. For example, the effect of the grid size on the results of the fully developed
free convection in an eccentric annulus of radius ratio N ¼ 0:5 and eccentricity E ¼
0:5 under the thermal boundary conditions 4.O has been investigated for different
combinations of number of grid segments in the h and j directions. The investigated
grid size ranged between 5£ 5 and 3 £ 30 in the h and j directions. The impact of the
grid size on the flow rate, heat absorbed and the average Nusselt numbers on the inner
and the outer walls for the above mentioned case is given in Table I, taking the
30 £ 30-grid results as the reference. This table shows that the maximum deviations
between the results obtained via the 25 £ 25 grid and that obtained via the 30 £ 30
grid are about 0.14 per cent for the flow rate, 0.2 per cent for the heat absorbed, 0.05 per
cent for the average Nusselt number at the inner wall and 0.28 per cent for the average
Nusselt number at the outer wall. Thus, the 25 £ 25 grid was adopted as it provides
practically grid independent results and good compromise between the obtained
accuracy and the computer CPU time.

The validity of the above method of solution and the developed computer code has
been checked using an energy balance. This energy balance for the present fully
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developed flow in an annulus with one wall kept isothermal implies that the heat
crossing one wall should pass across the other wall. For both cases under consideration
(4.I and 4.O) this energy balance means that, at any axial location (Z), the ratio of the
average heat flux at the outer wall to that at the inner wall should always equal the
radius ratio N. This has been checked and confirmed in all the computer runs and thus
provided a means of validating the computer code and the accuracy of the algorithm
used.

Comparing the results for the special case of concentric annuli with the
corresponding closed-form solution of El-Shaarawi and Al-Nimr (1990) provided a
second check on the validity of the present work. To simulate the concentric annuli
using the present model and code, an infinitesimally small eccentricity, namely
E ¼ 10211, was chosen and special runs were conducted. This very low value of
E ¼ 10211 was used rather than the exact value of E ¼ 0:0 because the latter cannot be
used for computations in bipolar coordinates as it represents a singularity for
transformation from the Cartesian to bipolar coordinates. Table II gives such a
comparison for the induced flow rates over a wide range of the annulus radius ratio
ðN ¼ 0:1 2 0:9Þ for both cases 4.I and 4.O. In this context, the authors would like to
call the reader’s attention to the following. The dimensionless temperature as defined

M £ N

Flow
rate,

F £ 103
Difference
(per cent)

Heat
absorbed,
Q £ 103

Difference
(per cent)

Average
Nusselt

numer on
the inner

wall
Difference
(per cent)

Average
Nusselt
number
on the

outer wall
Difference
(per cent)

5£ 5 10.8362 10.669 64.6610 14.280 3.3517 4.213 6.792 1 17.171
10 £ 10 11.8169 2.584 72.7626 3.540 3.2481 0.992 7.8094 4.766
15 £ 15 12.0118 0.977 74.4197 1.343 3.2281 0.370 8.0486 1.849
20 £ 20 12.0809 0.408 75.0092 0.561 3.2212 0.155 8.1362 0.780
25 £ 25 12.1130 0.143 75.2838 0.197 3.2180 0.056 8.1775 0.277
25 £ 30 12.1308 0.004 75.4365 0.005 3.2161 0.003 8.2007 0.006
30 £ 25 12.1125 0.147 75.2800 0.202 3.2180 0.056 8.1767 0.287
30 £ 30 12.1303 – 75.4327 – 3.2162 – 8.2002 –

Table I.
Effect of grid size on the
results of fully developed
free convection, Case 4.O.,

N ¼ E ¼ 0.5, the
reference values are those
obtained using a 30 £ 30

grid points mesh

Case 4.I Case 4.O
The annulus
radius ratio
(N)

El-Shaarawi and
Al-Nimr (1990)

(Concentric)
Present work
(E ¼ 10211)

Difference
(per cent)

El-Shaarawi and
Al-Nimr (1990)

(Concentric)
Present work
(E ¼ 10211)

Difference
(per cent)

0.1 0.2209 0.2203 0.272 6.5379 6.4529 1.300
0.2 0.5055 0.5047 0.158 5.6417 5.5973 0.787
0.3 0.8943 0.8934 0.101 5.5282 5.4973 0.559
0.4 1.4404 1.4389 0.104 5.8047 5.7800 0.426
0.5 2.2367 2.2345 0.098 6.4423 6.4203 0.341
0.6 3.4693 3.4657 0.104 7.5778 7.5567 0.278
0.7 5.5722 5.5659 0.113 9.6220 9.5987 0.242
0.8 9.8472 9.8346 0.128 13.862 13.834 0.202
0.9 22.805 22.773 0.140 26.803 26.756 0.175

Table II.
Validation of the

present work with
the closed form

solution given by
El-Shaarawi and

Al-Nimr (1990) for
the induced flow

rate, F £ 103
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by El-Shaarawi and Al-Nimr is twice that in the present article. Secondly, a thorough
check of their closed form-solution for the flow rate in case 4.O revealed that it should
be multiplied by a factor of 2 in order to be consistent with their definition of the
dimensionless temperature. Thirdly, due to the different definitions of the
dimensionless temperature in the two papers, the induced flow rates computed by
the analytical solution of El-Shaarawi and Al-Nimr has to be divided by 2 in order to
achieve consistency with the present definition and results.

The comparison given in Table II shows that the maximum deviation between the
two flow-rate predictions is 0.27 per cent for case 4.I and 1.3 per cent for case 4.O. Thus,
there is excellent agreement between the values of the induced flow rates predicted via
the present model and code with those predicated via the analytical solution of
El-Shaarawi and Al-Nimr (1990).

Results and discussions
Induced flow results
Figure 4(a) shows, for a slight eccentric annulus ðE ¼ 0:1Þ; the obtained fully
developed velocity profiles corresponding to cases 4.I and 4.O, as one rotates around
the annulus from its widest gap side (c ¼ j=p ¼ 0) to its narrowest gap side (c¼1, i.e.
j ¼ p). To have an insight into the effect of the eccentricity on the velocity profiles,
Figure 4(b) shows the obtained fully developed velocity profiles in the widest and
narrowest sides of the annulus for cases 4.I and 4.O with two values of eccentricity,
namely E ¼ 0:1 and 0.5. As can be seen from Figure 4(a) and (b) in either case 4.I or
4.O, the heating of a boundary causes the velocity profiles to be skewed towards this
boundary (i.e. shifts the point of maximum velocity towards the heated boundary, thus
the maximum velocity point becomes remarkably closer to the inner wall in case 4.I).
Moreover, these figures also show that, for a given E, the velocity profile has larger
values in case 4.O than in case 4.I. Thus, larger induced volumetric flow rates are

Figure 4.
Effect of the thermal
boundary conditions and
eccentricity
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anticipated in case 4.O. This is attributed to the larger heating surface area in case 4.O
when compared with case 4.I.

Figure 4(b) shows the effect of the eccentricity on the velocity profile; asymmetry
increases with E. The phenomenon of the asymmetric axial-velocity profiles is
attributed to the increase/decrease in the resistance to flow in the narrow/wide side of
the annular gap as a result of eccentricity. The resistance to flow in the narrowest gap
will always be larger than that in the widest gap because of higher velocity gradients in
the former than the latter. Thus, increasing the eccentricity (E) increases/decreases the
values of U in the widest/narrowest side of the gap. However, a net result will be an
increase in the average value U and consequently, F as will be shown later for both cases
4.I and 4.O for all values of radius ratio N, except for case 4.I. with small radius ratio.

Engineers are usually interested in the induced flow rate (F) rather than the above
details of the velocity profiles. For given N and E, this flow rate (F), that is obtained
from the fully-developed velocity profile, is the maximum possible that a vertical
eccentric annulus can engender under the free convection thermal boundary conditions
of the fourth kind. In other words, since fully developed flow conditions have already
been achieved, a further increase in the channel height would not produce any
additional flow. For a given annulus, a flow rate higher than this maximum possible
value can be achieved only by forced convection. Table III gives values of F over wide
ranges of N and E. As shown in Table III, for a given E, the dimensionless induced flow
rate F increases with N for both cases 4.I and 4.O. On the other hand, for a given N, the
flow rate F generally increases with E except for case 4.I with small eccentricity and
radius ratio. Moreover, the flow rate in case 4.O is larger, for given N and E, than the
corresponding value in case 4.I. This is a result of the larger heating surface in the
former case than the latter.

Heat transfer results
To clarify the effect of eccentricity on the temperature distribution, the variation of the
temperature around the active wall, in an annulus having N ¼ 0:5; has been plotted in
Figure 5(a) and (b) for cases 4.I and 4.O, respectively. These figures show that the
temperature around the active wall is not uniform. This is because the fluid thermal
resistance decreases as one rotates around the annulus from its widest side (c ¼ j /
p ¼ 0) to its narrowest side (c ¼ 1) since the thickness of the fluid layer decreases in
the same direction. Figure 5(a) and (b) also shows that the non-uniformity of the
temperature around the active wall increases with increase in eccentricity for both
cases 4.I and 4.O.

The circumferentially averaged temperature on the active wall has been computed
using the numerical representations for the following two equations on the inner and
outer walls, respectively.

uiwð Þc ¼
2ð1 2 N Þ

Np

Z p

0

uðhi; jÞH ðhi; jÞdj ð16Þ

uowð Þc ¼
2ð1 2 N Þ

p

Z p

0

uðho; jÞH ðho; jÞdj ð17Þ

Figure 6(a) shows that for a given N, the circumferentially averaged temperature on the
inner heated wall decreases in case 4.I with eccentricity. This is attributed to the
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increase in the induced flow rate that occurs with the increase in the value of E.
Consequently, the boundary layers developed on both boundaries of the annulus
become thinner as E increases and the resistances to the heat transfer decrease. Since
the cooling effect on the outer wall is more dominant than the heating effect on the
inner wall (since Ao is greater than Ai), the temperature level on the inner wall
decreases with eccentricity.
On the other hand, Figure 6(b) shows that for a given N, the circumferentially averaged
temperature on the outer heated wall increases in case 4.O with E. Again this is

Figure 5.
Effects of eccentricity on

temperature variation

Figure 6.
Effects of eccentricity on

circumferentially
averaged temperature
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attributed to the decrease in thermal resistance on the two walls. However, in case 4.O,
the cooling on the inner wall is not dominant as it is on the outer wall in case 4.I and
consequently, the temperature on the outer wall increases with E.

The bulk fluid temperature can be calculated as follows:

Tm ¼

Z
A

Tu dA

f
¼

Z
X

Z
Y

Tu dx dy

f
ð18Þ

which in a dimensionless form is

um ¼
8

p

1 2 N

1 þ N

Z p

0

Z hi

ho

uUH 2dh dj

U
: ð19Þ

This integration has been evaluated numerically and computed by the following
equation.

um ¼
8

p

ð1 2 N Þ

ð1 þ NÞU

Xm
j¼2

Xn
i¼2

uði; jÞU ði; jÞðH ði; jÞÞ2

þ0:5
Xn
i¼2

uði; 1ÞU ði; 1ÞðH ði; 1ÞÞ2

þuði;mþ 1ÞU ði;mþ 1ÞðH ði;mþ 1ÞÞ2

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA
DhDj

ð20Þ

The variations of the bulk fluid temperature with N and E are shown in Figure 7(a) and
(b) for cases 4.I and 4.O, respectively. These two figures show that, for a given E, the

Figure 7.
Effect of eccentricity on
mean bulk temperature
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increase in the radius ratio leads to an increase in the mean bulk temperature for case
4.I and vice versa for case 4.O. This can be explained by taking into consideration that
the ratio of the inner surface area (Ai) to the outer surface area (Ao) equals the radius
ratio (N). Thus, increasing N means that the ratio of the inner heating surface area to
the outer cooling surface area in case 4.I increases and consequently, um increases with
N. On the other hand, in case 4.O, the increase in the value of N means an increase of
the ratio of the inner cooling surface area to the outer heating surface area and hence
um decreases with N.

For case 4.O, the mean (bulk) fluid temperature, for a given N, increases with
eccentricity, as seen in Figure 7(b). This is due to the simultaneous increase in F and
the circumferentially averaged heated outer wall temperature ðuowÞ; which have been
explained before. On the other hand, the variation of um with E for a given N in case 4.I
(Figure 7(a)) can be attributed to the contradicting effects of E on F and uiw

(circumferentially averaged heated inner wall temperature), which have been explained
before. However, for large radius ratios (N.0.5) the mean bulk temperature increases
with the radius ratio N. This is attributed to the increase in the heating surface area at
the inner wall with respect to the cooling surface area at the outer wall. Increasing the
radius ratio makes the heating/cooling surface area at the inner/outer wall approach
each other and the cooling effect of the outer wall becomes less dominant and the bulk
fluid temperature increases with E.

The local Nusselt number has been calculated based on the local dimensionless heat
flux on the boundaries and the final derived formulas are as follows.

Case Inner wall Outer wall

4:I Nu4:I
i ¼

1

uiw 2 um
Nu4:I

o ¼
1

um

1

H

›u

›h

� �����
ho

4:O Nu4:O
i ¼ 2

1

um

1

H

›u

›h

� �����
hi

Nu4:O
o ¼

1

uow 2 um

The circumferential variations of the local Nusselt number on the inner and outer walls
of the annulus have been calculated for cases 4.I and 4.O. Unpresented results show
that, in general, the local Nusselt number on the active wall is larger than that on the
isothermal wall. For the isothermal wall (either the outer wall in case 4.I or the inner
wall in case 4.O) the circumferentially averaged Nusselt number has been computed by
integrating the local Nusselt number around the pertinent wall, using the following two
equations:

Case 4:I : Nu4:I
o ¼

2ð1 2 N Þ

p

Z p

0

�
Nu4:I

o

�
H ðho; jÞ dj ¼

N

um
ð21Þ

Case 4:O : Nu4:O
i ¼

2ð1 2 N Þ

Np

Z p

0

�
Nu4:O

i

�
H ðhi; jÞ dj ¼

1

Num
ð22Þ

For the uniform heat flux wall, the following equations have been used to compute the
circumferentially averaged Nusselt number:
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Case 4:I : Nu4:I
i ¼

1

ðuiwÞc 2 um
ð23Þ

Case 4:O : Nu4:O
o ¼

1

ðuowÞc 2 um
ð24Þ

Formulae (23) and (24) are based on the energy balance used by Trombeta (1972). This
energy balance uses the temperature difference between the circumferential averaged
wall temperature on the active wall and the fluid mean bulk temperature rather than
the local temperature difference in the calculations of the heat transfer coefficient
(Nusselt number). The variations of the circumferentially averaged Nusselt number on
the inner and outer walls with the radius ratio N for different values of the eccentricity
(E) are plotted in Figures 8(a) and (b) and 9(c) and (d) for cases 4.I and 4.O, respectively.
These figures show that the circumferentially averaged Nusselt number on the active
wall is in general larger than that on the isothermal wall. However, in case 4.O with
small radius ratio and small eccentricity, the opposite is true. This behaviour of the
circumferentially averaged Nusselt number on both the inner and outer walls of the
annulus is explained hereafter.

In isothermal annular flows, the hydrodynamic boundary layer on the inner
boundary is thinner than that on the outer boundary. However, the heat transfer makes
the flow faster/slower near the active/isothermal wall of the annulus. Hence, in case 4.I
(in which the active wall is the inner wall), the heat transfer and the nature of the
annular flow work together to make the hydrodynamic boundary-layer on the inner
wall much thinner than that on the outer wall, resulting in larger values of Nusselt
number on the inner wall compared to that on the outer wall. In case 4.O (in which the
outer wall is the active wall), the heat transfer effect opposes the annular flow
requirements as it makes the flow faster/slower near the outer/inner wall of the

Figure 8.
Effect of eccentricity on
circumferentially
averaged Nusselt number
(case 4.I)
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annulus (i.e. thickening the hydrodynamic boundary layer developed on the inner
wall). For low eccentricities the effect of the annular flow feature overcomes that of the
heat transfer and the circumferentially averaged Nusselt number is larger on the inner
isothermal wall than that on the outer active wall. However, for larger eccentricities the
heat transfer effect becomes dominant and the circumferentially averaged Nusselt
number is larger on the outer active wall than that on the inner isothermal wall.

Figure 8(a) shows that the Nusselt number at the inner heated wall for case 4.I
decreases with the radius ratio for small eccentricities (0:1 # E # 0:4). However, for
larger eccentricities (E $ 0:5) the Nusselt number decreases with radius ratio till it
reaches a minimum value at radius ratio equal to 0.5 approximately, then it increases
with the radius ratio. This can be attributed to the effect of each of N and E on um and
F. As shown in Figure 7(a), um increases with N for all values of E. The increase in the
value of um will reduce the heat transfer from the active wall (inner wall in this case) to
the fluid, i.e. a reduction in the value of Nu4:I

i with N. However, increasing E increases
the flow rate F and consequently, increases the heat transfer (due to thinning of the
boundary-layers on the walls). Thus, for large values of E (E . 0:5) the increase in the
heat transfer (due to the increase in F ) overcompensates the reduction in heat transfer
(due to the increase in N) and the behaviours of Nu4:I

i with N and E shown in Figure 8(a)
are obtained. In other words, there is a continuous decrease in the circumferentially
averaged Nusselt number on the inner heated wall with the increase in the radius ratio
(N) for low range of eccentricity E , 0:5: However, for E . 0:5, Nusselt number on the
inner wall decreases with N to its minimum value at about N < 0.5, then it increases
with N.

Figure 8(b) shows the circumferentially-averaged Nusselt number on the outer wall
in case 4.I against the radius ratio N for various values of the parameter E. For low
range of radius ratio (N , 0.5), the Nusselt number on the outer wall increases with
eccentricity. This can be attributed to the decrease in the bulk temperature with the

Figure 9.
Effect of eccentricity on

the circumferentially
averaged Nusselt number

(Case 4.O)
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eccentricity for the low range of radius ratios (N , 0.5) as shown in Figure 7(a) and
consequently, an increase in Nusselt number with E according to equation (21). For
high values of eccentricity (E . 0.5), the bulk temperature increases with N, as shown
in Figure 7(a), and this results in a decrease in Nusselt number with N according to
equation (21).

For case 4.O, the variation of the circumferentially-averaged Nusselt number on the
inner isothermal wall against the radius ratio N is shown in Figure 9(a) for various
values of E. This behaviour can be directly explained by the mathematical expression
of the circumferentially averaged Nusselt number as function of N and um(equation
(22)). This equation shows that the circumferentially averaged Nusselt at the
isothermal inner wall is inversely proportional to N and um. For a given value of
eccentricity, um decreases with N as shown in Figure 7(b). Thus, increasing the radius
ratio N, for case 4.O, results in a decrease in the circumferentially-averaged Nusselt
number for any value of E. Similarly, for a given N, the fluid bulk temperature
increases with the eccentricity E, which leads to a direct decrease in the
circumferentially averaged Nusselt number with E.

Figures 9(a) and 10(a) and (b) show the variation of the circumferentially averaged
Nusselt number with N as computed by equation (24) for different eccentricities.
Physically this behaviour can be attributed to the fact that the annular flow features
make the boundary layer thick at the outer wall. However, this annular flow feature, in
case 4.O, is opposed by the heating effect at this wall, which causes thinning of the
boundary layer at this wall. The effect of the flow features on the thickness of the
boundary layer at the outer heated wall decreases with the eccentricity (as F increases
with E). For large value of eccentricity (E . 0:3), Nusselt number at the outer heated
wall increases with N reaching a maximum value at N ø 0:5: Increasing the radius
ratio above N ¼ 0:5 makes the cooling effects at the inner wall more significant due to

Figure 10.
Effect of eccentricity on
the circumferentially
averaged Nusselt number
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the increase in the cooling surface area of the inner wall, resulting in a decrease in um
which leads to a decrease in Nusselt number with N from its maximum value attained
at N ø 0:5 for all values of E . 0:3.

Engineers are interested in the induced flow rate and the maximum (in case of
heating) or minimum (in case of cooling) bulk temperature that the fluid attains as it
passes through the channel and reaches its exit cross-section ð �TmÞ: The latter can be
used to calculate the heat gained or lost by the fluid from entrance up to the annulus
exit ð �QÞ: This latter important engineering parameter ð �QÞ can be used directly instead
of using the Nusselt numbers on both walls. Therefore, it is given in Table III. From
this table we see that the the flow rate F and the heat absorbed �Q in case 4.O are larger,
for a given N and E, than the corresponding values in case 4.I. This is a result of the
larger heating surface in the former case than the latter.

Under thermal conditions of the fourth kind, the fully developed u and hence um do
not vary with axial distance (Z). The bulk temperature um does not change with further
increase in the channel height since, under fully-developed flow conditions, the heat
passes through the fluid from one wall is lost through the other wall. Thus, for a given N
and E, the computed fully-developed value of um corresponds also to the fluid bulk
temperature at the channel exit �um (i.e. um ¼ �um). The computed values of �um and F are
used to obtain Q ð¼ F �umÞ which is presented in Table III. Thus, the total heat gained or
lost by the fluid from entrance up to the channel exit, including the neglected developing
length, is obtained without need to integrate the Nusselt number over the channel height.

Conclusion
Fully developed laminar free convection in vertical open-ended eccentric annuli has
been investigated for thermal boundary conditions of the fourth kind. The governing
momentum equation has been solved numerically using an analytical solution for the
governing energy equation. Numerical results have been obtained for a fluid of Prandtl
number 0.7 in annuli of various radius ratios ðN ¼ 0:1 2 0:9Þ over a wide range of the
dimensionless eccentricity ðE ¼ 0:1 2 0:9Þ: The presented fully-developed flow rates
(F ) present the maximum possible limiting values which can be physically induced in
the free-convection regime under thermal boundary conditions of the fourth kind. The
results show that F increases with both N and E except for small values of N and E in
case 4.I. The bulk fluid temperature increases with eccentricity for both cases 4.I and
4.O for all radius ratio except for case 4.I with small radius ratio where it decreases
with the eccentricity E. Both the flow rate F and the heat absorbed Q in case 4.O is
larger, for given N and E, than the corresponding values in case 4.I. This is a result of
the larger heating surface in the former case than the latter.
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